
J. Fluid Mech. (2009), vol. 638, pp. 141–160. c© Cambridge University Press 2009

doi:10.1017/S002211200999125X

141

A higher-order Hele-Shaw approximation
with application to gas flows through shallow

micro-channels

A. D. GAT†, I. FRANKEL AND D. WEIHS
Faculty of Aerospace Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel

(Received 28 April 2009; revised 16 July 2009; accepted 16 July 2009)

The classic hydrodynamic Hele-Shaw problem is revisited in the context of evaluating
the viscous resistance to low-Mach compressible viscous gas flows through shallow
non-uniform micro-fluidic configurations. Our recent study of gas flows through
constricted shallow micro-channels indicates that the failure of the standard Hele-
Shaw approximation to satisfy the no-slip boundary condition at the sidewalls severely
restricts its applicability. To overcome this we have extended the asymptotic scheme
to incorporate an inner solution in the vicinity of the sidewalls (which, in turn,
allows for the characterization of the effects of channel cross-section geometry) and
its matching to an outer correction. We have compared the results of the present
asymptotic analysis to existing exact analytic and numerical results for straight and
uniform channels and to finite-element simulations for a 90◦ turn and a symmetric T-
junction, which demonstrate a remarkably improved accuracy relative to the standard
Hele-Shaw approximation. This suggests the present scheme as a viable alternative
for the rapid performance estimate of micro-fluidic devices.

1. Introduction
Gas flows through micro-channels appear in a variety of micro-fluidic applications

(e.g. cooling in micro-electronic devices and flow control; see Ho & Tai 1998; Gad-
El-Hak 1999). Typical of many of these micro-fluidic devices is that fluid motion
takes place within the narrow gap between parallel solid walls (Lee, Wong & Zohar
2001; Yu et al. 2005). Furthermore, these configurations are often shallow in the
sense that the gap width is much smaller than all other dimensions (Arkilic, Breuer
& Schmidt 2001; Zohar et al. 2002). The small-Reynolds-number pressure-driven
flows through these micro-configurations encounter a large viscous resistance giving
rise to ‘low Mach compressibility’, i.e. substantial density variations accompanied by
relatively minor gas accelerations (Taylor & Saffman 1957; Cole, Keller & Saffman
1967). Furthermore, under standard atmospheric conditions, gas flows through these
micro-channels are characterized by Knudsen numbers Kn ≈ 10−2–10−1 and are thus
subject to weak rarefaction effects (Cercignani 2000; Sone 2002).

The flow through long straight channels with a uniform cross-section has been
studied extensively. An exact (series-form) analytic solution exists for the fully
developed incompressible flow through such rectangular channels (cf. White 1986).
Arkilic, Schmidt & Breuer (1997) have studied the lubrication approximation for
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the compressible slip flow through a long two-dimensional micro-channel. Sharipov
(1999) has studied gas flows through rectangular channels over the entire spectrum
of the Knudsen numbers. Analytic solutions have been presented by Aubert &
Colin (2001) and Jang & Wereley (2004) for slip flows (at small Kn) through the
same configuration. However, many applications (e.g. channel networks and fuel-cell
devices; Gad-El-Hak 2002; Lee, Wong & Zohar 2002a ,b) involve more complex
geometries including such elements as channel junctions and bifurcations and sudden
expansions and contractions, among others. The study of non-uniform micro-channels
is therefore of considerable interest.

Lauga, Stroock & Stone (2004) have analysed the small-Reynolds-number
incompressible flow through slowly varying (quasi-uniform) planar channels. For
shallow configuration progress may be made by considering Hele-Shaw flows within
the narrow gap between parallel walls. These constitute a classic problem in
fluid mechanics of considerable fundamental interest (transcending the immediate
application to micro-channels). The basic problem formulation (cf. Batchelor 1967)
is concerned with incompressible flows and is incapable of satisfying the no-slip
boundary condition at the sidewalls. In our recent contribution (Gat, Frankel &
Weihs 2008) we have extended the theory to viscous gas flows, still without accounting
for the no-slip condition at the sidewalls. Comparison of our approximate analytic
results and exact finite-element simulations has demonstrated that failure to satisfy
this condition is the main source of error, effectively increasing it from the presumed
quadratic to linear in the small shallowness parameter ε (defined in (2.4)). This, in
turn, severely restricts the practical value of the resulting approximation to very
small values of ε. It is thus expected that the extension of the classic Hele-Shaw
approximation to incorporate the no-slip condition at the sidewalls can significantly
enhance its usefulness. This constitutes the main thrust of the present contribution.

In the next section we formulate the problem and present the asymptotic scheme
providing leading-order outer and inner approximations and a correction term to the
former. Analytic closed-form solutions are obtained by use of conformal mapping.
Also discussed in this section are the effects of weak rarefaction and non-rectangular
cross-sections. In § 3 we digress from the non-uniform planform configurations at
the focus of the present contribution to consider the flow through uniform micro-
channels, which, in turn, provides an opportunity for comparison of our results with
existing exact solutions. Subsequently, in § 4 we illustrate the scheme in the context
of the flow through a 90◦ turn and a symmetric T-junction. In § 5 we recapitulate
the main results. The effects of some specific cross-section geometries are explicitly
presented in the Appendix.

2. Analysis
The steady motion of a perfect viscous gas is governed by the equation of continuity

∇̃ · (ρ̃ ũ) = 0, (2.1)

the equation of motion (neglecting the effects of body forces)

ρ̃ ũ · ∇̃ũ = −∇̃p̃ + ∇̃ · τ̃ , (2.2)

the equation of state

p̃ = ρ̃RT̃ (2.3)

and the equation of energy (which, in anticipation of the subsequent isothermal-
flow assumption, is not explicitly presented here). These equations are supplemented
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Figure 1. (a) Definition of coordinate system and geometrical parameters for shallow
channels and (b) the local coordinates for the inner domain.

by appropriate boundary conditions. In (2.1)–(2.3), ρ̃, p̃ and T̃ denote the gas
density, pressure and temperature, respectively; ũ is the fluid-velocity vector; τ̃ is
the Newtonian stress tensor; and R is the gas constant.

To describe the flow through the narrow gap between parallel planes we employ a
Cartesian coordinate system (x̃, ỹ, z̃) whose x̃ and ỹ axes lie at the channel midplane
and z̃ is perpendicular thereto (see figure 1). The x̃ and ỹ coordinates are normalized by
D, a characteristic lateral dimension of the channel planform, whereas z̃ is normalized
by H , half the gap width, to obtain the dimensionless coordinates x, y, z (tildes are
omitted when denoting dimensionless quantities). Subsequent analysis focuses on
shallow micro-channels, i.e. on the limit when

ε =
H

D
� 1. (2.4)

For long shallow micro-channels whose uninsulated walls are maintained at uniform
temperatures we follow the common practice in assuming an isothermal flow (see
Arkilic et al. 1997; Qin, Sun & Yin 2007; see also the discussion in Gat et al. 2008)
and that fluid-inertial effects are negligible (cf. Zohar et al. 2002; Graur, Meolans &
Zeitoun 2005). We normalize the pressure by p0, a characteristic pressure drop over
a characteristic distance D in the streamwise direction. The corresponding reference
density ρ0 is selected by use of (2.3). The velocity scale reflecting the dominant balance
between the pressure gradient and the viscous resistance is accordingly U = p0H

2/μD

(where μ denotes the shear viscosity of the fluid at the reference conditions). The x and
y components of u, u and v, respectively, are normalized by U ; w, the corresponding
z component, is scaled by εU .

2.1. An outer expansion

For the above scaling and asymptotically small ε we obtain from (2.1)–(2.3)

∂

∂x
(ρu) +

∂

∂y
(ρv) +

∂

∂z
(ρw) = 0, (2.5)

p

x
=

2u

z2
+ O(ε2, εRe), (2.6)

p

y
=

2v

z2
+ O(ε2, εRe), (2.7)

p

z
= O(ε2, ε3Re) (2.8)

and

p = ρ. (2.9)
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These are supplemented by the no-slip condition u = 0 on the channel walls together
with appropriate conditions at the channel entrance and exit sections. In (2.6)–(2.8)
Re = ρ0UH/μ is the Reynolds number. Typical of the Hele-Shaw approximation is
the appearance in the above equations of the reduced Reynolds number εRe rather
than Re itself (cf. Batchelor 1967). Integrating (2.6) and (2.7) twice over z while
making use of (2.8) and the no-slip conditions at z = ±1 we obtain the following for
u‖ = (u, v):

u‖ = −1

2

(
1 − z2

)
∇‖p, (2.10)

where ∇‖ = î∂/∂x + ĵ∂/∂y is the planar portion of ∇. When defining

G =
1

6
p2 (2.11)

and making use of (2.9) and (2.10), integration yields∫ 1

0

ρu‖dz = −∇‖G. (2.12)

As such, G may represent the scalar potential of the mass-flux-density vector (per
unit length) in the two-dimensional planform domain. Furthermore, substituting (2.9)
and (2.10) in (2.5) we obtain

−3

2

(
1 − z2

)
∇2

‖G +
∂

∂z
(pw) = 0. (2.13)

When this relation is integrated across the channel and vanishing of w at z = ±1 is
used, we find that G (x, y) is harmonic, i.e.

∇2
‖G = 0 (2.14)

within the planform domain formed by the intersection of the channel midplane and
its sidewalls. We further conclude that in the absence of velocity slip at the walls,
w ≡ 0 (see, however, § 2.4.1).

In subsequent analysis we focus on small Reynolds numbers and accordingly put
forward the expansion

G ∼ G0 + εc̄G1 + O
(
ε2, εRe

)
, (2.15)

where both G0 and G1 satisfy (2.14) and c̄ is an O(1) numerical coefficient to be
defined later on (see (2.33) and (2.48)). By (2.10) in conjunction with the definition of
G and its harmonic nature we cannot in general impose on the resulting solution the
no-slip condition u‖ = 0 at the channel sidewalls. Expansion (2.15) is thus expected to
provide only an ‘outer’ solution becoming non-uniform in the vicinity of the sidewalls.

2.1.1. Leading-order outer solution

Following the above, we can only impose the vanishing at the channel sidewalls of
the velocity components perpendicular thereto. By use of (2.10) and the definition of
G, this is expressed by the condition

∂G0

∂n
= n̂ · ∇‖G0 = 0 (2.16)

(where n̂ is the unit vector lying in the midplane perpendicularly to the planform
boundary and directed into the channel). To complete the formulation of the problem
governing G0 we need to specify the distribution of G0 or ∂G0/∂n across the entrance
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and exit sections of the channel. Subsequent calculation is facilitated via replacing
these sections of the actual configuration by straight and uniform semi-infinite
channels. In these we impose the far-field conditions

∂G0

∂n
= − Cj

Wj

, (j = 1, 2, . . .) . (2.17)

Here ∂/∂n denotes differentiation along the cross-sectional normal directed into
the channel and Cj and Wj are the dimensionless mass influx and channel width,
respectively. (Evidently, by mass conservation

∑
j Cj = 0.) Condition (2.17) thus

represents the far-field uniformity of the mass-flux density in these semi-infinite
channels. The above well-posed Neumann problem uniquely determines G0(x, y)
which is therefore considered a known function in subsequent derivation.

The actual calculation of G0 may be facilitated by regarding it as the real part of
an analytic function F0 (t) = G0 (x, y) + iQ0 (x, y) of the complex variable t = x + iy.
For a simply connected planform domain Riemann’s theorem (see Carrier, Krook &
Pearson 1966) guarantees existence of an analytic function

t = M (ζ ) , (2.18)

representing a conformal mapping of the interior of the channel-planform domain
on to the upper half of the auxiliary ζ = ξ + iη complex plane. We select M(ζ ) so
that the far upstream and downstream (entrance and exit) sections are mapped on
the points ζ = aj (j = 1, 2, . . .) of the real ξ axis. In this plane F0 [M (ζ )] = f0 (ζ ) is
readily obtained,

f0 (ζ ) = g0 (ξ, η) + iq0 (ξ, η) = − 1

π

∑
j=1

Cj ln
(
aj − ζ

)
. (2.19)

The solution of the leading-order outer problem is thus provided (in parametric
representation) by the union of (2.18) and (2.19). In agreement with the general
matching scheme of van Dyke (1975) we cannot at this stage formulate the problem
governing the outer correction G1. We thus turn now to address the ‘inner’ problem.

2.2. The inner problem

For a rectangular channel cross-section we employ the local orthogonal system of
coordinates (s, n, z), where the s and n coordinate lines lie at the channel midplane
and are parallel (in the local streamwise direction) and perpendicular (pointing into
the fluid domain), respectively, to the sidewall (see figure 1b). The corresponding
metric coefficients are hn = hz = 1 and hs = 1 + κn, where κ is the dimensionless
(presumed O (1)) local curvature of the channel planform boundary. We expect that
for ε → 0 the flow adapts to no slip within a narrow layer adjacent to the sidewalls.
We thus define an inner normal coordinate N via

n = δ (ε) N, (2.20)

where δ(ε) → 0 for ε → 0 and N ∼ O (1) within the inner region. From the continuity
equation in conjunction with the vanishing at the sidewall of un we anticipate that
un ∼ O (δ) within the inner domain and accordingly write u‖ = (Us, δUN ) for the
velocity field and denote by P the pressure there. Furthermore, by inspection of the
s-equation of motion one readily concludes that the distinguished inner-limit process
corresponds to selecting δ = ε. To leading order we thus obtain the equations of
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motion

∂P

∂s
∼ ∂2Us

∂z2
+

∂2Us

∂N2
,

∂P

∂N
=

∂P

∂z
∼ 0 (2.21)

and the equation of continuity

∂

∂s
(PUs) +

∂

∂N
(PUN ) ∼ 0. (2.22)

For future reference we note that by (2.21) P = P (s) is uniform across the inner
domain and therefore equal to the local ‘outer’ pressure p|n=0. With a view to
subsequent asymptotic matching we present the inner velocity components

PUs ∼ −3

2

(
1 − z2

) (
∂G0

∂s
+ εc̄

∂G1

∂s

)
+ PVs (s, N, z) + O (ε) (2.23)

and

PUN ∼ −3

2

(
1 − z2

) (
1

ε

∂G0

∂n
+ c̄

∂G1

∂n

)
+ PVN (s, N, z) + O (ε) . (2.24)

We note that since G0 satisfies (2.14) together with the homogeneous Neumann
condition (2.16) at the sidewall, ∂G0/∂n ∼ O(ε), within the inner domain. Thus, all of
the terms explicitly appearing on the right-hand side of (2.24) are O(1). Furthermore,
as a matter of convenience we add in (2.23) the term εc̄∂G1/∂s (which is O(ε)) and
use in the above the hybrid notation involving both (s, n) and (s, N). The first terms in
(2.23) and (2.24) trivially satisfy the matching conditions in the intermediate domain
characterized by the simultaneous limits n → 0 and N → ∞. The correction terms
thus satisfy

Vs, VN = 0 as N → ∞. (2.25)

To leading order the no-slip boundary conditions imposed on Us and UN yield

PVs =
3

2

(
1 − z2

) ∂G0

∂s
(2.26)

and

PVN =
3

2

(
1 − z2

) (
1

ε

∂G0

∂n
+ c̄

∂G1

∂n

)
(2.27)

at the sidewalls n, N = 0 as well as at the channel top and bottom walls z = ±1. (For
future reference we retain the first term on the right-hand side of (2.27), although by
(2.16) it vanished at n = 0; see § 2.4.2.)

Substituting (2.23) into (2.21) we find that Vs is governed by

∂2Vs

∂z2
+

∂2Vs

∂N2
= 0. (2.28)

Inasmuch as to leading order G is uniform throughout the inner domain (for s fixed)
we may write the solution of (2.28) satisfying (2.25) and (2.26) as

PVs =

(
∂G0

∂s

)
n=0

V̄s(N, z), (2.29a)

where

V̄s =
48

π3

∞∑
k=0

(−1)k e−N( π
2 +kπ)

(1 + 2k)3
cos

[(π

2
+ kπ

)
z
]
. (2.29b)
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Substituting (2.23) and (2.24) into the O (1) equation of continuity (2.22) and recalling
that both G0 and G1 are harmonic (2.14) we obtain

∂

∂s
(PVs) +

∂

∂N
(PVN ) = 0. (2.30)

We next integrate this equation over the entire inner domain (at a fixed s). Making
use of (2.16), (2.25) and (2.27) we obtain

c̄

(
∂G1

∂n

)
n=0

=

∫ ∞

0

∫ 1

0

∂

∂s
(PVs) dz dN, (2.31)

which by use of (2.29a) yields

∂G1

∂n
=

∂2G0

∂s2
at n = 0 (2.32)

and

c̄ =

∫ ∞

0

∫ 1

0

V̄s dz dN. (2.33)

When substituting (2.29b) we obtain

c̄ = 6

(
2

π

)5 ∞∑
k=0

(2k + 1)−5 ≈ 0.63 (2.34)

(cf. Sharipov 1999). While (2.32) is apparently a purely outer-domain relation
connecting G1 and G0, it actually reflects the outer limit of the mass flux normal to
the sidewall associated with the O (1) fluid motion within the inner domain. This is
somewhat similar to the familiar ‘displacement effect’ in higher-order boundary-layer
theory at high Reynolds numbers (Lighthill 1958).

Within the framework of the leading-order inner problem, VN remains
indeterminate. We recognize, however, that UN actually represents un = εUN , i.e.
an O (ε) contribution to the velocity field within the inner domain. As such, it can be
determined only after the calculation of the first-order outer correction, in accordance
with van Dyke’s general matching scheme referred to above. Furthermore, since the
width of the inner domain is itself O (ε), fluid-velocity correction there will only have
an O

(
ε2

)
contribution to the total mass-flow rate through the channel. Thus, to

complete an O (ε) calculation of the mass-flow rate, it is sufficient to evaluate the
correction G1 in the outer domain, which we address next.

2.3. The O (ε) outer-domain correction

The correction G1(x, y) is governed by a Neumann problem consisting of (2.14) in
conjunction with (2.32) at the sidewalls. To complete the problem statement we need
to stipulate conditions at the entrance and exit sections. As elaborated on in the
next section, it is more convenient to formulate the problem when the mass-flow
rates (rather than pressures) are specified in these sections. The requisite condition on
∂G1/∂n is thus determined so as to compensate for the deficit of the mass-flow rate
associated with the (relatively slow) flow within the inner domains adjacent to the
sidewalls. Similar to the derivation of (2.32), integration of VS over the entire inner
domain yields the total deficit 2εc̄∂G0/∂n at the (presumed uniform) semi-infinite
entrance and exit channels. Making use of (2.17) we thus obtain the condition

∂G1

∂n
= 2

∂G0

∂n
(j = 1, 2, . . .) . (2.35)
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Similarly to the above calculation of G0 we apply (2.18) mapping the (presumed
simply connected) channel planform on to the upper half of the ζ = ξ + iη plane.
Making use of the conformal nature of the transformation by means of the analytic
function M(ζ ), we express the derivatives of G0 and G1 appearing in (2.32) in terms
of their ζ -plane counterparts g0 = Re{f0} and g1, respectively (where Re{} denotes
the real part of a complex-valued expression). Thus, since the sidewalls are mapped
on the real ξ axis (

∂G1

∂n

)
n=0

=
1

|M ′|

(
∂g1

∂η

)
η=0

. (2.36)

Similarly, an elementary displacement in the downstream direction along the wall ds

corresponds to an increment dξ ; hence(
∂2G0

∂s2

)
n=0

=
1

|M ′|
∂

∂ξ

(
1

|M ′|Re{f ′
0}

)
η=0

, (2.37)

where the primes denote differentiation with respect to ζ . Substituting these
expressions into (2.32) we obtain

∂g1

∂η
=

∂

∂ξ

(
1

|M ′|Re{f ′
0}

)
at η = 0. (2.38)

Employing the Green’s function for the Neumann problem in the half-plane (cf.
Polyanin 2002) we get

g1 =
2

π

{
1

4

∫ ∞

−∞

∂

∂β

[
f ′

0(β)

|M ′(β)|

]
ln

[
(ξ − β)2 + η2

]
dβ −

∑
j

Cj

Wj

ln
(
|ζ − aj |

)}
, (2.39)

which represents a superposition of the effects of (2.35) at the entrance and exit
sections and (2.32) along the channel sidewalls.

2.4. Extensions of the basic model

The foregoing analysis is readily adapted to incompressible flows of homogeneous
fluids (ρ = 1). Since (2.6)–(2.8) remain the same we still obtain (2.10). Relation (2.12)
for the mass-flow rate still holds provided that we modify the definition of G to read

G =
1

3
p. (2.40)

In terms of this modified definition the rest of the analysis follows as before when
throughout § 2.2 PUN , PUs , PVN and PVs are replaced by UN , US , VN and VS ,
respectively.

2.4.1. Weak rarefaction effects

In shallow micro-configurations, fluid motion takes place within the narrow (≈
1 μm) gap between parallel plates (Arkilic et al. 1997; Lee et al. 2001, 2002a ,b; Yu
et al. 2005). Adopting the quantitative definition

Kn =
μ

2Hp̃

(
πRT̃

2

)1/2

, (2.41)

expressing the ratio of the molecular mean-free path and channel depth in terms
of macroscopically measurable physical quantities, one finds for air at standard
atmospheric conditions Kn ≈ 10−2–10−1 (Beskok, Karniadakis & Trimmer 1996;
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Ho & Tai 1998; Jang & Wereley 2004). Focusing on the range Kn < 0.1 gas
motion is usually described by means of a continuum slip-flow model consisting
of the hydrodynamic (Navier–Stokes–Fourier) equations which at solid walls are
supplemented by appropriate velocity-slip and temperature-jump conditions (Gad-El-
Hak 1999; Cercignani 2000; Sone 2002). In the absence of temperature gradients, the
condition u‖ = 0 is thus replaced by the Navier-type conditions

u‖ = ∓σKn
∂u‖

∂z
at z = ±1. (2.42)

In (2.42) σ is the viscous slip coefficient representing the interaction between gas
molecules and solid walls. In subsequent illustrations we employ the value σ = 1.1466
obtained by Albertoni, Cercignani & Gotusso (1963) through the solution of the
Kramers problem, assuming purely diffuse molecular reflection at the wall. (The
relation between σ and the momentum accommodation coefficient has been studied by
Sharipov 2003; see also Ewart et al. 2007.) Since μ = μ(T ), by (2.41) under isothermal
conditions Kn = Kn0/p, where Kn0 corresponds to the reference conditions. When
making use of (2.42) one obtains (we note here a typographical error in the sign of
the second term on the right-hand sides of (3.1) and (3.2) in Gat et al. 2008)

u‖ = −
[
1

2

(
1 − z2

)
+ σ

Kn0

p

]
∇‖p (2.43)

instead of (2.10) (cf. Arkilic et al. 1997; Sharipov & Seleznev 1998, for the one-
dimensional counterpart). Substituting (2.43) into (2.5) and integrating in conjunction
with the requirement w = 0 at z = ±1 lead to (2.14) where the definition of (2.11) is
now replaced by

G =
1

6
p2 + σKn0p. (2.44)

Furthermore, for the z-velocity component we obtain

w =
1

4
z
(
1 − z2

) 1

p
∇2

‖

(
1

3
p2

)
(2.45)

which, in general, does not vanish when Kn �= 0 (cf. Arkilic et al. 1997). With the
redefinition of G, the rest of the analysis of the leading-order outer problem remains
intact. Imposing the slip conditions at the sidewalls involves a tedious calculation.
To avoid this we continue to impose there the no-slip conditions which, in turn,
introduce an O(Kn) error into the resulting inner flow field and an O(εKn) in the
outer correction as well in the calculation of integral quantities. Thus, subsequent
results for the total mass-flow rate and viscous resistance of the channel remain
unchanged at non-zero Kn � 1 when expressed in terms of the modified definition
of G (2.44).

2.4.2. Non-rectangular cross-sections

The application of different micro-fabrication technologies results in a variety of
cross-sectional shapes as illustrated in figure 7 in the Appendix. Thus, for instance,
trapezoidal cross-sections (figure 7a) are produced by means of photolithography (Wu
& Cheng 2003; Wu, Wu & Wei 2009), whereas some etching methods (MacInnes, Du
& Allen 2003) yield quarter-circular sidewalls (as in figure 7c). To consider the effects
of the specific shape of the channel sidewalls we employ a local orthogonal system of
coordinates (s, n, z) similar to that defined in § 2.2. Unlike a rectangular cross-section,
where the sidewall simply corresponds to N = 0, here its local (at a fixed s) geometry
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N = N0(z)

(a) (b)

B

iz

N

A∞

A–∞ B C

iη

ξ

D∞ D∞

2

C

Figure 2. A schematic view and coordinates definition for the inner domain in (a) the
N + iz physical plane and (b) the auxiliary ξ + iη plane.

is defined by N = N0(z) (see figure 2a). The statement of the inner problem stays the
same as in the above (2.20)–(2.28).

Unlike the above derivation of the matching condition on ∂G1/∂n for a rectangular
cross-section the first term on the right-hand side of (2.27) does not vanish at
N = N0(z). Taylor series expansion of this term in conjunction with (2.14) and
definition (2.20) yield

PVN ∼ −3

2

(
1 − z2

) [
N0(z)

(
∂2G0

∂s2

)
n=0

− c̄

(
∂G1

∂n

)
n=0

]
at N = N0(z). (2.46)

Integration of (2.30) over the entire inner domain for a fixed s in conjunction with
the matching conditions (2.25) and representation (2.29a) of Vs yield(

∂2G0

∂s2

) ∫ ∞

N0(z)

∫ 1

−1

V̄s(N, z) dz dN −
∫ 1

−1

(PVN )N0(z) dz = 0. (2.47)

Substituting (2.46) we obtain (2.32) and

c̄ = c̄1 + c̄2, (2.48)

where

c̄1 =
1

2

∫ ∞

N0(z)

∫ 1

−1

V̄s(N, z) dz dN (2.49a)

and

c̄2 =
3

4

∫ 1

−1

(1 − z2)N0(z) dz. (2.49b)

The former contribution (2.49a) is a straightforward generalization of (2.33). Thus (cf.
§ 2.3) it represents the mass-flow-rate deficit as a result of the slowing down of the flow
adjacent to the sidewalls. To evaluate c̄1 we need to obtain the velocity perturbation
Vs satisfying the Dirichlet problem consisting of (2.25), (2.26) and (2.28) within the
inner domain (figure 2a). Closed-form analytic expressions for c̄1 are obtained in the
Appendix via application of conformal mapping. The latter term (2.49b) represents
a purely ‘geometric’ effect – the diminution of the mass-flow rate associated with G0

owing to the replacement of a rectangular cross-section (whose sidewall is located at
N = 0) by the actual cross-section (whose sidewall is at N0(z)). We thus conclude that
the effects of the sidewall geometry – both ‘direct’ (affecting fluid motion within the
inner domain) and ‘indirect’ (affecting G1 within the outer domain) – are embodied
in the specific numerical value that the coefficient c̄ assumes. The calculation of c̄ for
various cross-sections is illustrated in the Appendix.

3. Sidewall effects on the viscous resistance of straight and uniform channels
Exact analytic and numerical solutions exist for fully developed flows through

straight and uniform channels. Comparison with these allows us to verify the improved
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accuracy achieved through the incorporation into the present analysis of sidewall
effect. To this end we focus in the following on the various approximations for the
mass-flow rate through the channel.

For a straight and uniform channel ∇‖G is uniform. Making use of (2.12)
and neglecting sidewall effects, we readily obtain the dimensionless mass-flow rate
(normalized by 2ρ0p0H

3/μ)

ṁ0 =
�G

L
, (3.1)

where �G denotes the drop in G along a channel segment of length L. Since ∇‖G0 is
uniform the matching condition (2.32) reduces to a homogeneous Neumann condition
on G1 at the sidewalls. Both G1 and G0 thus satisfy similar Neumann problems, and
hence G1 is proportional to G0. To maintain a prescribed mass-flow rate we need to
compensate for losses within the inner domain through multiplying ∇‖G by the factor
1 + 2εc̄ (cf. (2.15) and (2.35)). Thus, to account for the leading O(ε) correction of the
sidewalls, we need to modify (3.1) to

ṁ1 = (1 + 2εc̄)−1 �G

L
. (3.2)

The above scheme in which the conditions at the entrance and exit sections are
determined so as to maintain a prescribed value of ṁ results in the formulation of
a Neumann problem governing G1 (which is independent of the actual length of
the ‘semi-infinite’ entrance and exit channels). Alternatively, one could in principle
consider the entrance and exit pressures and hence �G prescribed and calculate
the reduction in ṁ associated with the sidewall effects. This approach will result
in G1 being governed by a ‘mixed’ problem involving homogeneous Dirichlet-type
conditions at the entrance and exit sections. For the particular case of a uniform
channel both schemes are equally straightforward. In the latter scheme we obtain the
reduction in the mass-flow rate associated with the direct effect on the flow within
the inner domains adjacent to the sidewalls −2εc̄�G/L; hence

ṁ∗
1 = (1 − 2εc̄)

�G

L
(3.3)

which, within O(ε), is equivalent to (3.2).
Figure 3 describes the variation with ε of Rṁ, the ratios between the various

approximations of the mass-flow rate ṁ0 (dashed line), ṁ1 (solid line) and ṁ∗
1 (dash-

dotted line) and the corresponding exact analytic or numerical solution, respectively.
Thus, the deviation from Rṁ = 1 is the relative error associated with the asymptotic
calculation. Experimental data for the mass-flow rate normalized by the same
theoretical solution are included to complement the picture.

Figure 3(a) is concerned with uniform rectangular channels. Here D is equal to half
of the channel width so that ε = 1 corresponds to a square cross-section. As a matter of
convenience normalization is here based on explicit analytic (series-form) expressions
of Jang & Wereley (2004) for compressible slip flows at small Knudsen numbers.
We have selected Kn = 0.05 as a typical reference value corresponding by (2.41) to
standard atmospheric conditions at the channel exit. The corresponding results from
the combined analytic and numerical calculations of Sharipov (1999) (solid triangles)
and Aubert & Colin (2001) (solid squares) nearly coincide with Rṁ = 1. Also indicated
are the experimental data of Zohar et al. (2002) (+) and Ewart et al. (2007) (×). In
the absence of experimental data for gas flows through channels of larger ε we have
added the results of Akbari et al. (2009) (circles) for liquid flows through rectangular
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Figure 3. Variation with ε of the normalized mass-flow rate according to ṁ0 (dashed line), ṁ1

(solid line) and ṁ∗
1 (dash-dotted line). (a) Gas slip flow through uniform rectangular channels

(Kn = 0.05 at the exit section). Calculations of Sharipov (1999) are denoted by � and those
of Aubert & Colin (2001) by �. Experimental data of Zohar et al. (2002) are denoted by
+ and those of Ewart et al. (2007) by ×. All these are normalized by reference to Jang &
Wereley (2004). Experimental data of Akbari, Sinton & Bahrami (2009) (◦) for liquid flow
are normalized by exact incompressible solution. (b) Liquid flow through uniform trapezoidal
(γ = 54.70; see figure 7) channels; normalization by reference to Morini (2004); experimental
results by Wu & Cheng (2003) (×) and Wu et al. (2009) (+).

channels, which are normalized by the corresponding exact solution for incompressible
flow (cf. White 1986). Figure 3(b) considers the (normalized) mass-flow rate through
a straight channel with a uniform isosceles trapezoidal cross-section characterized by
γ = 54.70 (see figure 7a). For this cross-section c̄ ≈ 0.73 (see the Appendix and figure
8) in (3.2) and (3.3). The above theoretical approximation and the experimental data
of Wu & Cheng (2003) (×) and Wu et al. (2009) (+) are here normalized by the
simulation results of Morini (2004).

As expected, in both parts of the figure the relative error associated with ṁ0 initially
grows linearly with ε (and subsequently at a faster rate). Thus, already at relatively
small ε, ṁ0 no longer qualifies as a quantitative approximation of the actual mass-
flow rate. The results based on ṁ1 (3.2) represent a substantial improvement. Thus,
in marked contrast with ṁ0, up to ε ≈ 0.4, ṁ1 involves an error of less than ≈10 %.
In both parts of the figure ṁ∗

1 is remarkably accurate being nearly indistinguishable
from the exact reference up to ε ≈ 0.5. It is thus interesting to consider the difference
between ṁ∗

1 and ṁ1. While both are equivalent to O(ε) they differ at O(ε2); from (3.2)
and (3.3), ṁ∗

1/ṁ1 = 1 − (2εc̄)2. The variation may be traced back to the difference
between the respective schemes. As mentioned above, in the calculation leading to
(3.2) we increase �G so as to ensure that the mass-flow rate is equal to that prescribed
up to O(ε). The correction G1 thus obtained introduces an O(ε2) error (contributed
by both the O(ε) terms within the inner domain and the O(ε2) outer correction)
which is not accounted for. In evaluating ṁ∗

1 we keep �G as prescribed and directly
calculate the reduction of the mass-flow rate resulting from the sidewalls. Figure 3
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Figure 4. A schematic view of (a) the corresponding picture in physical x + iy plane and (b)
the 90◦ bend in auxiliary ξ + iη plane and (c) of the symmetric T-junction.

indicates that the latter approach may be preferable. It is, however, not readily
applicable to non-uniform channels. In these configurations (addressed in the next
section) we rely on ṁ1 (3.2) which, as demonstrated above, provides a substantially
improved accuracy relative to ṁ0, thereby significantly extending the range of ε where
a quantitative approximation is obtained.

The experimental data presented show no definite trend with increasing ε. This
seems appropriate given that such trends are already embodied in the exact theoretical
solutions normalizing these data. Furthermore, according to the various sources there
is a large scatter in the experimental measurements (±6 % according to Zohar et al.
2002, ±10 % as reported by Akbari et al. 2009 and ±11 % documented by Wu &
Cheng 2003). Thus, contrary to the superficial appearance (enhanced by our selection
of normalization and large scale and the present omission of ‘error bars’; cf. figure 3
of Morini 2004) our calculations (together with the exact reference solutions) do fall
within the margins of error of the empirical data.

4. The flow through non-uniform shallow configurations
To illustrate the effects of the sidewalls on the viscous resistance for configurations

other than the uniform straight channel we consider the 90◦ turn whose planform is
defined in figure 4(a). The transformation (Kober 1957)

M(ζ ) =
1

π

[
1 +

(
b + 1

b − 1

)1/2
]−1∫ ζ

0

[
(b + 1)1/2 (ζ1 − 1)1/2 + (b − 1)1/2 (ζ1 + 1)1/2

(b − 1)1/2 (ζ1 − a)(ζ1 − b)1/2

]
dζ1

(4.1)
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maps the interior of the channel in the physical t = x + iy plane on to the upper
half of the auxiliary ζ = ξ + iη plane as depicted in figure 4(b). The parameters a, b

appearing in (4.1) are determined so that the radius of the arc BC is

R = Im{M(1) − M(−1)}, (4.2)

where Im{} denotes the imaginary part of a complex-valued expression, and also so
that the semi-infinite channels are of width unity which, by principal-value integration
along a small semicircle centred at ζ = a, yields the equation[

1 +

(
b + 1

b − 1

)1/2
]−1 [(

a + 1

b − a

)1/2

+

(
b + 1

b − 1

)1/2 (
a − 1

b − a

)1/2
]

= 1. (4.3)

The leading-order outer solution is obtained from (2.19). Substituting into (2.39) we
then get g1; hence

g ∼ g0 + εc̄g1 =
1

π
(1 + 2εc̄) ln

∣∣∣∣ζ − a

b − a

∣∣∣∣
− εc̄

2π

∫ ∞

−∞

∂

∂β

[
1

|M ′(β)|
1

π(β − a)

]
ln

[
(ξ − β)2 + η2

]
dβ. (4.4)

Far upstream and downstream of the turn (i.e. when ζ → ∞, a, respectively; cf.
figure 4a) the effect of the bend attenuates and, by (2.17) and (2.35), ∇‖G becomes
uniform across the channel. The flow then becomes identical to the flow through
a uniform straight channel. Consequently, the difference between �G required to
drive a unit (dimensionless) mass-flow rate through the actual bend configuration
and �G(0), the requisite value for a corresponding straight and uniform channel,
approaches a finite limit with increasing channel length. There is some arbitrariness
in specifying the reference uniform channel. We here select for comparison the pair
of semi-infinite channels extending from x = 1 to x → ∞ and from y = 1 to y → ∞,
respectively. Making use of (3.2) for ṁ = 1, the vanishing of G at the origin and
the upstream–downstream symmetry of the bend, we write the limit of the difference
�G − �G(0):

� = 2 lim
x→∞

[G(x, y) − (x − 1)(1 + 2εc̄)] = 2 lim
ζ→∞

[g(ζ ) − (m(ζ ) − 1)(1 + 2εc̄)]. (4.5)

When substituting (4.1) and (4.4) we obtain

� ∼ �0 + c̄ε�1, (4.6a)

where

�0 = lim
ζ→∞

2 [g0(ζ ) − (M(ζ ) − 1)] (4.6b)

and

�1 = lim
ζ→∞

2 [g1(ζ ) − 2(M(ζ ) − 1)]. (4.6c)

This representation of � is useful in that it separates the effects of the channel
planform embodied in �0 and �1 from those associated with ε and the shape of
the sidewalls (c̄), respectively. For a unit mass-flow rate through a uniform-channel
segment of total length 2L, (3.2) yields �G(0) = 2(1 + 2εc̄)L. Furthermore, provided
that L is sufficiently large so that ∇‖G is already approximately uniform across both
channel sections at x = L + 1 and y = L + 1, respectively, we may use the above to
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obtain

�G ∼ 2(1 + 2εc̄)L + �. (4.7)

We thus recognize � as the present normalized counterpart of the ‘equivalent length’
prevailing in the literature concerning viscous (incompressible) flows through pipe
systems. Thus, pressure-head losses associated with bends, valves or constrictions are
quantified in terms of an additional length of a straight and uniform conduit (White
1986). Alternatively, by the linearity of �G and ṁ, we may modify (3.2) to

ṁ =
�G

2(1 + 2εc̄)L + �
, (4.8)

where now � represents the reduction of the mass-flow rate at a given �G.
The forgoing calculation for the flow through the 90◦ turn is readily adapted

to describe the symmetric T-junction appearing in figure 4(c). The line E∞F is
now a reflection-symmetry line (rather than a solid wall) where ∂G/∂n = 0.
The calculation of G0 remains the same as before (since G0 originally satisfies
a homogeneous Neumann condition along E∞F ). The modification of the O(ε)
correction to G involves two elements. The (2εc̄) term in the factor pre-multiplying
the first (logarithmic) term on the right-hand side of (4.4) represents the compensation
for the mass-flow-rate deficit associated with the sidewalls at the far downstream
section D∞E∞ (cf. the discussion preceding (2.35)). Since, this effect results now from
the presence of only a single wall, this term is accordingly replaced by εc̄. The
integral term on the right-hand side represents the contribution of ∂G1/∂n along the
channel sidewalls, as obtained from (2.31). To subtract the contribution of the now
non-existent wall E∞F we need to eliminate the interval (a, b) from this integral. The
expressions for �1 (4.6) and ṁ (4.8) are accordingly modified to

�1 = lim
ζ→∞

[g1(ζ ) − 2(M(ζ ) − 1)] − lim
ζ→a

[
g1(ζ ) − (Im {M(ζ )} − 1)

]
(4.9)

and

ṁ =
�G

2(1 + 3
2
εc̄)L + �

. (4.10)

The above analysis identifies �, the equivalent length appearing in (4.7), (4.8) and
(4.10), as the single parameter characterizing the viscous resistance of the shallow
configuration. Figure 5 presents the variation with the radius R (see figure 4a,c) of �0

(4.6b) and �1 (4.6c) or (4.9) comprising � for a 90◦ turn and a symmetric T-junction,
respectively. As could be anticipated, �0 is diminishing with increasing R (which
effectively increases the local cross-sectional area). The relative changes in �1 are
smaller; �1 for the turn grows monotonically with R, whereas that for the T-junction
is initially diminishing, passes through a shallow minimum for R ≈ 0.67 and then
becomes monotonically increasing.

Figure 6 describes the effects of various parameters on the deviation of the
asymptotic calculations (4.8) and (4.10) from the ‘exact’ values of ṁ obtained through
use of the finite-element COMSOL 3.4 package. To this end we present the variation
of Rṁ, the ratio of the corresponding asymptotic and ‘exact’ values (i.e. Rṁ = 1
represents an ‘exact’ calculation). We here focus on finite (L = 1.5) 90◦ bend and
symmetric T-junction configurations (cf. figure 4a,c) with rectangular cross-sections.
(Calculations based on the above analysis as well as the numerical simulations
demonstrate that already for L ≈ 1, G becomes nearly uniform across both the
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and a symmetric T-junction (triangles). Leading- and first-order calculations are marked by
hollow and solid symbols, respectively; ε = 0.125. (c) Variation of Rṁ with Re for the 90◦

turn and ε = 0.05 (triangles) and 0.125 (circles).
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entrance and exit sections, which supports our use of (4.8) and (4.10) for finite-length
configurations.)

Figure 6(a) presents the variaton of Rṁ with ε for a 90◦ turn (figure 4a) characterized
by R = 1. In the numerical simulation we have selected standard atmospheric exit
conditions. Entrance pressures have been varied with ε so as to maintain Re ≈ 0.1
at the channel exit. Similar to figure 3, the relative error associated with a leading-
order calculation (hollow circles) grows initially linearly with ε. Thus, already at
relatively small ε, this calculation ceases to provide a quantitative approximation. The
incorporation of the sidewall effects in the first-order calculation (solid circles) results
in a remarkably improved accuracy reflecting the nonlinear and non-monotonical
variation of Rṁ with ε. Figure 6(b) presents values of Rṁ for bends (circles)
and junctions (triangles) for ε = 0.125 and several values of the sidewall radius
of curvature within the interval 0 � R � 1. Similar to figure 6(a), a substantial
improvement of accuracy is achieved when replacing the leading order by an O(ε)
calculation of ṁ (hollow and solid symbols, respectively). Furthermore, the values of
Rṁ seem essentially independent of R, including R → 0. This suggests that corners
in the channel planform have only local effects on the flow field. Thus, while the
formulation of the inner problem in § 2.2 has assumed κ ∼ O(1), the results concerning
integral quantities seem nevertheless applicable to planform configurations involving
corners.

The error introduced by the neglected fluid-inertial effects is examined in figure 6(c)
which presents the variation of Rṁ (based on the O(ε) calculation of ṁ) with Re for
a finite (L = 1.5) 90◦ turn and ε = 0.05 (triangles) and 0.125 (circles). We see that
Rṁ > 1; i.e. the analysis neglecting inertial effects underestimates the actual viscous
resistance of the configuration. As could be anticipated, the error is monotonically
increasing with Re. However, even at a Reynolds number as large as Re ≈ 10, the
error introduced by the asymptotic approximation is still less that 5 % (for the larger
value of ε = 0.125). It is worthwhile to note that the relative error introduced by the
neglect of inertial effects is actually larger for the smaller values of ε. This reflects
the fact that the errors involved in the present analysis (cf. (2.6)–(2.8)) are O(ε2) and
O(εRe), respectively. Thus, at a given Re the latter becomes relatively more important
with diminishing ε.

5. Concluding remarks
The present contribution is concerned with the classic Hele-Shaw problem of

the flow through the narrow gap between parallel surfaces. Specifically, we have
generalized the Hele-Shaw approximation to incorporate the no-slip condition at
the configuration sidewalls with the goal of reducing the error involved in the
calculation of the configuration viscous resistance from linear to quadratic in ε. This
has required an extension of the asymptotic scheme including the construction of
an ‘inner’ solution in the vicinity of the sidewalls, a first-order ‘outer’ correction and
the asymptotic matching of the two in the resulting singular problem. The results
presented in figures 3 and 6(a) unequivocally demonstrate that the above goal has been
met. A remarkably improved accuracy has been achieved through the incorporation
of sidewall effects. This substantially extends the range of ε for which the Hele-Shaw
analysis provides a quantitative approximation.

Our present scheme reduces the viscous compressible (or incompressible) flow
problem to a pair of Neumann problems within the two-dimensional planform
domain. For a given configuration planform these problems need to be solved only
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once. Subsequently, one may readily obtain solutions for arbitrary (within the domain
of validity) cross-sectional geometry, entrance and exit conditions and ε. The present
analysis thus presents a viable alternative allowing for the rapid estimate of the
performance of shallow micro-configurations. This is particularly true (but not limited
to) geometries where appropriate conformal transformations are available (which
then provide closed-form solutions). The present contribution has focused on the
development of the general asymptotic scheme. The specific illustrations considered
here have been selected so as to serve this purpose (e.g. to demonstrate the improved
accuracy). Applications of the scheme to engineering problems (e.g. optimization of
micro-channel networks) are currently being studied and will be reported elsewhere.

Appendix. Calculation of the coefficient c̄ characterizing non-rectangular
cross-sections

For a specific N0(z) the calculation of c̄2 (2.49b) is straightforward. The evaluation
of c̄1 requires the calculation of Vs . To this end we map the inner domain within
the T = N + iz plane (figure 2b) on to the upper half of the auxiliary ζ = ξ + iη
plane by means of analytic function T = m(ζ ). In the ζ plane the harmonic function
vS(ξ, η) = VS(N, z) satisfies the transformed condition (2.26), namely

vs =
1

2

∂P

∂s
{1 −

(
Im{m(β)}

)2} at η = 0. (A1)

By use of the Green’s function for the Dirichlet problem in the upper half-plane we
obtain vs . The corresponding v̄s (cf. (2.29a)) is

v̄s =
3

2π

∫ ∞

−∞

{1 − (Im[m(β)])2}η dβ

(ξ − β)2 + η2
, (A2)

and c̄1 is accordingly

c̄1 =
1

2

∫ ∞

−∞

∫ ∞

0

v̄s(ξ, η)

∣∣∣∣dm

dz

∣∣∣∣
2

dη dξ . (A3)

For polygonal cross-sectional shapes the requisite analytic function m(ζ ) appearing in
(A1) and (A2) may be obtained through application of the Schwarz–Christoffel trans-
formation (Milne-Thomson 1968). Thus, for the trapezoidal cross-section (figure 7a)
whose upper and lower vertices are mapped on ζ = −1 and ζ =0, respectively, we
obtain

m =
2

π
ζ

γ
π −1 (ζ + 1)− γ

π , (A4)

and for a hexagonal shape (figure 7b) whose vertices are mapped on ζ = 0 and ζ =
±1, we obtain

m =
2

π
ζ

2γ
π −1 (ζ − 1)− γ

π · (ζ + 1)− γ
π . (A5)

(Since the dimensions within the inner domain are scaled by H , the dimensionless
depths of both channels are equal to 2.) The values of c̄ obtained via substitution
of (A4) and (A5) in (A3) are depicted in figure 8 by the solid and dashed curves,
respectively. At γ = π/2 both cross-sections become rectangular and accordingly
c̄ ≈ 0.63 for both of them. Also presented in figure 8 (by the horizontal dotted
and dashed-dotted lines) are the values of c̄ for the semicircular and quarter-
circular sidewalls, respectively (see figure 7c,d ). In these cases c̄1 is obtained via
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Figure 7. Schematic definition of (a) trapezoidal and (b) hexagonal cross-sections and (c)
semicircular and (d ) quarter-circular sidewall geometry.
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Figure 8. Variation with γ of the coefficient c̄ quantifying the influence of the sidewalls
for hexagonal (dashed line) and trapezoidal (solid line) cross-sections. Also marked are the
values of c̄ for semicircular (≈0.79, dotted line) and quarter-circular (≈0.85, dash-dotted line)
sidewalls.

a numerical solution of the corresponding Dirichlet problems (2.25), (2.26) and (2.28)
governing Vs .
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